

Eindhoven Line-Up and WIDE-Related Activities

Maurice Heemels

WIDE kick-off meeting

44 A P P

/department of mechanical engineering

1/26

technische universiteit eindhoven

Outline

- Overview of our group
- Past and current research activities related to WIDE
 - Networked Control Systems
 - Model predictive control
- Conclusions towards WIDE

/department of mechanical engineering

2/26

TU/e

technische universiteit eindhoven

Where is the Eindhoven University of Technology?

TU/e

Facts and figures:

- Founded in 1956
- 9 scientific departments
- 10 academic Bachelor programmes, 19 Master programmes
- 3000 employees, 120/220 professors. 6800 students, 450 PhD students.

technische universiteit eindhoven

Department of Mechanical Engineering

Dynamics and Control Technology (DCT) group (www.dct.tue.nl)

- Control Systems Technology (CST chaired by Prof. Maarten Steinbuch)
- Dynamics & Control (D& C chaired by Prof. Henk Nijmeijer)

Some facts and figures:

- Staff:
 - 2 full profs, 5 associate profs, 8 assistant profs
 - 6 postdocs, 34 PhD students
- 200 students in the Master Program, 80 MSC/year
- Both groups 100% scores in recent international research evaluations

/department of mechanical engineering

3/26

/department of mechanical engineering

People involved in WIDE

Staff:

- Nathan van de Wouw (D& C group, associate prof)
- Maurice Heemels (CST group, associate prof)

PhD students:

- Nick Bauer (University of California at Santa Barbara) full time
- Tijs Donkers (TU/e) part time (toolbox/communication constraints)

Prof. Maarten Steinbuch (CST) will be their supervisor ('Dutch system').

~~ ~ ~ ~ ~

/department of mechanical engineering

5/26

7/26

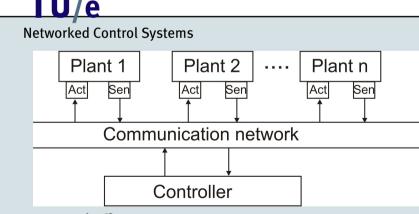
TU/e

technische universiteit eindhoven

Relevant background to WIDE

- Networked control systems: stability analysis and controller synthesis
 - Communication delays, varying sampling intervals, packet loss
 - Communication constraints
- Model predictive control
 - Hybrid & Nonlinear Systems: stability and robustness
 - Low complexity & suboptimality

≪ ∢ ∆ ▶ ₩


/department of mechanical engineering

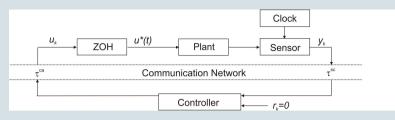
6/26

technische universiteit eindhoven

Networked Control Systems

technische universiteit eindhoven

- Network effects
 - Varying delays, varying sampling times
 - Information loss
 - Communication constraints
- Influence of these (uncertain) effects on stability and performance


44 4 A P H

/department of mechanical engineering

8/26

Networked control systems

Assumptions:

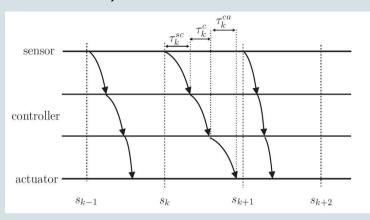
- Time-driven sensor $(s_k = kh, k \in \mathbb{N})$
- Event-driven controller
- Event-driven actuator

Time-delays:

- Network induced delays:
 - Sensor-to-controller $au_{sc.k}$
 - Controller-to-actuator $au_{ca,k}$
- ullet Computational delay $au_{c,k}$

$$\tau_k = \tau_{sc,k} + \tau_{ca,k} + \tau_{c,k}$$

**** 4 & > >>**


 $/\,department\ of\ mechanical\ engineering$

9/26

TU/e

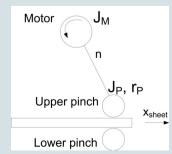
technische universiteit eindhoven

Networked control Systems

≪ ∢ & ▶ ▶

 $/\,department\ of\ mechanical\ engineering$

10/26

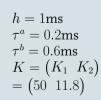

TU/e

technische universiteit eindhoven

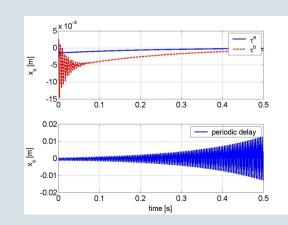
Motivating example [Cloosterman et al, CDC'06]

Example to motivate the importance of investigating the influence of timevarying delays on stability

$$\dot{x}(t) = Ax(t) + Bu^*(t)$$
 $u^*(t) = u_k, \text{ for } t \in [s_k + \tau_k, s_{k+1} + \tau_{k+1})$


$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 \\ \frac{nr_P}{J_M + n^2 J_P} \end{pmatrix}$$
$$x(t) = \begin{pmatrix} x_s(t) \\ \dot{x}_s(t) \end{pmatrix}$$

$$u_k = Kx_k$$


TU/e

technische universiteit eindhoven

Motivating example

Switching sequence: $\tau^a, \tau^b, \tau^a, \tau^b, \dots$

ullet Also possible for varying sampling intervals h_k showing similar effects

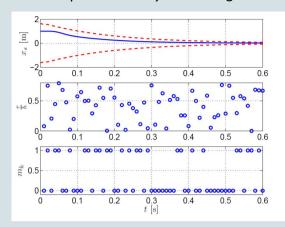
11/26

Network effects on stability, robustness and performance

- ★ LMI-based (efficient!) methods for
- Analysis for stability and performance of these NCS (linear systems)
- Feedback control synthesis methods guaranteeing stability
 - guarantees on decay rates
 - different type of control structures (not MPC at this moment)
- * Results incorporate:
- Time-varying delays $\tau_k \in [\tau_{min}, \tau_{max}]$ (possibly > sampling time!)
- Time-varying sample times $h_k \in [h_{min}, h_{max}]$
- Possible packet loss given a maximal number of sequent drops

[Cloosterman et al: CDC 06, CDC 07, ACC 08, Trans. Aut. Control]

**** 4 & > >>**


/department of mechanical engineering

13/26

TU/e

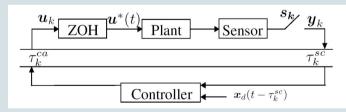
technische universiteit eindhoven

Simulation with packet loss: synthesis augm. state feedback

$$h = 0.01s, \ \gamma = 0.1, \tau_{min} = 0, \tau_{max} = 0.8h \ {\rm and} \ \bar{\delta} = 2$$

**** 4 & > >>**

 $/\,department\,of\,mechanical\,engineering$


14/26

TU/e

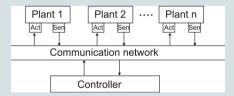
technische universiteit eindhoven

Tracking control for NCS

- Nathan van de Wouw, Marieke Cloosterman (TU/e)
- Payam Naghshtabrizi, Joao Hespanha (Univ. California Santa Barbara)

$$u_k = u_{ff}(s_k) - K(x_k - x^d(s_k))$$

Time-stamping of messages needed!


[van de Wouw et al, CDC 07]

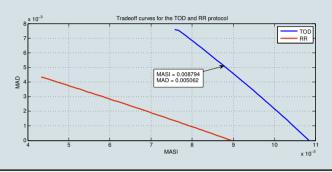
TU/

technische universiteit eindhoven

Communication constraints & protocols

- Previous results based on single loop perspective
- No protocol or scheduling of communication

- Every sampling time one actuator/sensor (possibly grouped in nodes) gets access to network, e.g. RR, TOD, ...
- Protocol determines which node gets access
- Sampling interval might vary over time: $T \in [0, MASI]$
- Delays in communication $\tau \in [0, MAD]$


Can we guarantee stability or performance?

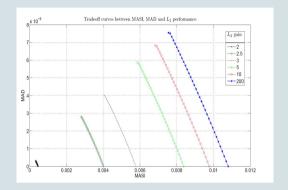
Communication constraints & protocols

- Given controller, plant, protocol: we can analyze stability and performance
- Joint work with Andy Teel (UCSB) & Dragan Nesic (Univ. of Melbourne)

Stability & different protocols: tradeoff curves

444

/department of mechanical engineering


17/26

TU/e

technische universiteit eindhoven

Communication constraints & protocols

Tradeoff curves between performance, delay, sampling interval for TOD protocol

**** 4 & > >>**

/department of mechanical engineering

18/26

technische universiteit eindhoven

Summary NCS

- Analysis and Control Synthesis methods (LMIs) for single loop NCS
 - Varying delays & sampling intervals
 - Possible packet loss
 - Both stabilization and tracking problems
 - Diverse methods (toolbox)
- Analysis methods for NCS with communication constraints
 - Various protocols
 - varying delays and sampling intervals
 - Recent developments (Tijs Donkers)

TU/e

technische universiteit eindhoven

Model Predictive Control

MPC for hybrid / NL systems

Model of plant

$$x_{k+1} = g(x_k, u_k)$$

MPC problem set-up: Based on $x_{0|k} = x_k$

$$J(x_k, \mathbf{u}_k) \triangleq F(x_{N|k}) + \sum_{i=0}^{N-1} L(x_{i|k}, u_{i|k}),$$

over all input sequences $\mathbf{u}_k \triangleq (u_{0|k}, \dots, u_{N-1|k})$ subject to the constraints:

$$x_{i+1|k} \triangleq g(x_{i|k}, u_{i|k}), \quad i = 0, \dots, N-1,$$

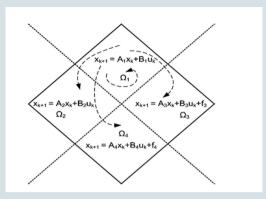
$$x_{i|k} \in \mathbb{X}$$
, for all $i = 1, \dots, N$,

$$u_{i|k} \in \mathbb{U}$$
, for all $i = 0, \dots, N-1$.

Receding horizon principle: $u_k = u_{0|k}^*$

444

/department of mechanical engineering


21/26

TU/e

technische universiteit eindhoven

Piecewise affine systems

$$x_{k+1} = A_i x_k + B_i u_k + f_i$$
 when $x_k \in \Omega_i$

Strong relationships to MLD models (Bemporad/Morari) [Heemels et al, Automatica, 2001]

≪ ∢ ∆ ⊳ ≫

/department of mechanical engineering

22/26

TU/e

technische universiteit eindhoven

Stability and Robustness

$$J(x_k, \mathbf{u}_k) \triangleq F(x_{N|k}) + \sum_{i=0}^{N-1} L(x_{i|k}, u_{i|k}),$$

over all input sequences $\mathbf{u}_k \triangleq (u_{0|k}, \dots, u_{N-1|k})$ subject to the constraints:

$$x_{i+1|k} \triangleq g(x_{i|k}, u_{i|k}), \quad i = 0, \dots, N-1,$$

$$x_{i|k} \in \mathbb{X}$$
, for all $i = 1, \dots, N$,

$$u_{i|k} \in \mathbb{U}$$
, for all $i = 0, \dots, N-1$.

How to guarantee stability and robustness (ISS) of the closed-loop system?

$$x_{k+1} = g(x_k, u_k, w_k)$$

Joint work with Mircea Lazar & others ...

TU/e

technische universiteit eindhoven

Results

Three methods for stability and robustness

- ullet Terminal cost and constraint method: adding constraint $x_{N|k} \in X_T$
- Tightening of constraints (i.e. changing $x_{i|k} \in X_i$)
- Adding (rob.) stabilization cond. using artificial Lyapunov functions

Results

Three methods for stability and robustness

- Terminal cost and constraint method: adding constraint $x_{N|k} \in X_T$
- Tightening of constraints (i.e. changing $x_{i|k} \in X_i$)
- \bullet Adding (rob.) stabilization cond. using artificial Lyapunov functions

For instance,

- Stability PWA affine systems: terminal cost and constraint method [Lazar et al, TAC, 2006], [Alessio et al, Automatica, 2007] Computation of F and polyhedral (!) X_T guaranteeing stability
- Stability and robustness for general nonlinear systems using a tightening approach: [Lazar, Heemels, Automatica, 2008]
- Adding stabilization constraint (allowing optimization of robustness!) for MPC of NL systems [Lazar et al, IJRNC, 2008]
- Robust stability using min-max MPC approach [Lazar et al, SCL, 2008]
- → low complexity MPC + effect of sub-optimality on performance!

444

/department of mechanical engineering

25/26

TU/e

technische universiteit eindhoven

Conclusions

- Two of our main research lines are coupled to WIDE's objectives:
 - Networked control systems
 - * delays, varying sampling intervals, message loss, ...
 - * communication constraints and protocols
 - Model predictive control
- Blending and extending them is "more or less" goal of WIDE ...
- ... keeping an eye on
- Efficient implementation: decentralized methods (recently starting on this ... NMPC o8)
- Interaction with wireless technology (match between theoretical results and actual behavior of WSN)

26/26

444

/department of mechanical engineering